Solution
\n1. (a) It's easy to check that
$$
(x)
$$
 ||lnx) is normal
\nspace. If n' is a Cauchy sequence in X.
\n1. Then for any $e > 0$, \exists N ∞ P
\n \Rightarrow $\frac{3\pi}{2}$ |lnx - f_m| is a Cauchy sequence in X.
\nThen for any $e > 0$, \exists N \in P
\n \Rightarrow $\frac{3\pi}{2}$ |lnx - f_m|x| = ||ln-f_m||_{\infty} $\leq \frac{\xi}{\pm}$, $\forall n, m \geq N$
\n \Rightarrow $\frac{3\pi}{2}$ |lnx - f_m|x| = ||ln-f_m||_{\infty} $\leq \frac{\xi}{\pm}$, $\forall n, m \geq N$
\n \Rightarrow $\frac{3\pi}{2}$ |lnx - f_m|x| = |lnx - f_m|x| = C $\frac{\xi}{\pm}$, $\forall n, m \geq N$
\n \Rightarrow $\frac{3\pi}{2}$ |lnx - f_m|x = \frac{3\pi}{2} |lnx - f_m|x| = C $\frac{\xi}{\pm}$, $\forall n \geq N$.
\nSince N is independent of X, we can take $m \rightarrow \infty$ and
\nConsequently, $||f_m||_{\infty} = \frac{3\pi}{2}$ |lnx - f_m|x| $\leq \xi$, $\forall n \geq N$.
\nWhat we prove $f \in X$.
\nFirst $\times \in \mathbb{R}$, let $\frac{3\pi}{2}$ is nontruous.
\nThen $|f(x) - f_m(x)| = |f_m - f_m(x)| + |f_m(x) - f_m(x)| + |f_m(x) - f_m(x)|$
\n $\leq \frac{3\pi}{2}$
\n \Rightarrow The $||f||_{\infty} \leq ||f_m - f_m||_{\infty} + ||f_m||_{\infty} < \frac{\pi}{2}$ |lnx | $\leq \infty$
\nWe have $f \in X$.
\n(b) Let \Rightarrow f_n(x) = $\sin(\sqrt{x + \frac$

$$
||f_{n} - f||_{\infty} = \frac{9\cdot P}{x\cdot P} \cdot |f_{n}(x) - f_{n}(x)|
$$
\n
$$
= \frac{9\cdot P}{x\cdot P} \cdot |S_{n} \cdot (x^{2} + f_{1}) - S_{n} \cdot |x|
$$
\n
$$
= \frac{9\cdot P}{x\cdot P} \cdot |S_{n} \cdot (x^{2} + f_{1}) - S_{n} \cdot |x|
$$
\n
$$
S_{n}(e) = \frac{9\cdot r}{s\cdot n} \cdot \frac{1}{s\cdot n} \cdot \frac
$$